Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nat Commun ; 15(1): 2820, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561332

RESUMO

RORγt+ group 3 innate lymphoid cells (ILC3s) are essential for intestinal homeostasis. Dysregulation of ILC3s has been found in the gut of patients with inflammatory bowel disease and colorectal cancer, yet the specific mechanisms still require more investigation. Here we observe increased ß-catenin in intestinal ILC3s from inflammatory bowel disease and colon cancer patients compared with healthy donors. In contrast to promoting RORγt expression in T cells, activation of Wnt/ß-catenin signaling in ILC3s suppresses RORγt expression, inhibits its proliferation and function, and leads to a deficiency of ILC3s and subsequent intestinal inflammation in mice. Activated ß-catenin and its interacting transcription factor, TCF-1, cannot directly suppress RORγt expression, but rather alters global chromatin accessibility and inhibits JunB expression, which is essential for RORγt expression in ILC3s. Together, our findings suggest that dysregulated Wnt/ß-catenin signaling impairs intestinal ILC3s through TCF-1/JunB/RORγt regulation, further disrupting intestinal homeostasis, and promoting inflammation and cancer.


Assuntos
Doenças Inflamatórias Intestinais , beta Catenina , Humanos , Camundongos , Animais , beta Catenina/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Imunidade Inata , Linfócitos/metabolismo , Via de Sinalização Wnt , Doenças Inflamatórias Intestinais/genética , Inflamação
2.
Bioinformatics ; 40(1)2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38216534

RESUMO

MOTIVATION: Transcription factor binding sites (TFBS) are regulatory elements that have significant impact on transcription regulation and cell fate determination. Canonical motifs, biological experiments, and computational methods have made it possible to discover TFBS. However, most existing in silico TFBS prediction models are solely DNA-based, and are trained and utilized within the same biosample, which fail to infer TFBS in experimentally unexplored biosamples. RESULTS: Here, we propose TFBS prediction by modified TransFormer (TFTF), a multimodal deep language architecture which integrates multiomics information in epigenetic studies. In comparison to existing computational techniques, TFTF has state-of-the-art accuracy, and is also the first approach to accurately perform genome-wide detection for cell-type and species-specific TFBS in experimentally unexplored biosamples. Compared to peak calling methods, TFTF consistently discovers true TFBS in threshold tuning-free way, with higher recalled rates. The underlying mechanism of TFTF reveals greater attention to the targeted TF's motif region in TFBS, and general attention to the entire peak region in non-TFBS. TFTF can benefit from the integration of broader and more diverse data for improvement and can be applied to multiple epigenetic scenarios. AVAILABILITY AND IMPLEMENTATION: We provide a web server (https://tftf.ibreed.cn/) for users to utilize TFTF model. Users can train TFTF model and discover TFBS with their own data.


Assuntos
Genoma , Multiômica , Sítios de Ligação , Ligação Proteica , Fatores de Transcrição/metabolismo , Biologia Computacional/métodos
3.
Cell Mol Immunol ; 21(1): 47-59, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049523

RESUMO

A highly immunosuppressive tumor microenvironment (TME) and the presence of the blood‒brain barrier are the two major obstacles to eliciting an effective immune response in patients with high-grade glioma (HGG). Here, we tried to enhance the local innate immune response in relapsed HGG by intracranially injecting poly(I:C) to establish a robust antitumor immune response in this registered clinical trial (NCT03392545). During the follow-up, 12/27 (44.4%) patients who achieved tumor control concomitant with survival benefit were regarded as responders in our study. We found that the T-cell receptor (TCR) repertoire in the TME was reshaped after poly(I:C) treatment. Based on the RNA-seq analysis of tumor samples, the expression of annexin A1 (ANXA1) was significantly upregulated in the tumor cells of nonresponders, which was further validated at the protein level. In vitro and in vivo experiments showed that ANXA1 could induce the production of M2-like macrophages and microglia via its surface receptor formyl peptide receptor 1 (FPR1) to establish a Treg cell-driven immunosuppressive TME and suppress the antitumor immune response facilitated by poly(I:C). The ANXA1/FPR1 signaling axis can inhibit the innate immune response of glioma patients by promoting an anti-inflammatory and Treg-driven TME. Moreover, ANXA1 could serve as a reliable predictor of response to poly(I:C), with a notable predictive accuracy rate of 92.3%. In light of these notable findings, this study unveils a new perspective of immunotherapy for gliomas.


Assuntos
Anexina A1 , Glioma , Humanos , Anexina A1/metabolismo , Anti-Inflamatórios , Imunidade , Receptor 3 Toll-Like/metabolismo , Microambiente Tumoral
4.
Cell Rep ; 42(8): 112979, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37572321

RESUMO

KRAS is the most commonly mutated oncogene in human cancer, and mutant KRAS is responsible for over 90% of pancreatic ductal adenocarcinoma (PDAC), the most lethal cancer. Here, we show that RNA polymerase II-associated factor 1 complex (PAF1C) is specifically required for survival of PDAC but not normal adult pancreatic cells. We show that PAF1C maintains cancer cell genomic stability by restraining overaccumulation of enhancer RNAs (eRNAs) and promoter upstream transcripts (PROMPTs) driven by mutant Kras. Loss of PAF1C leads to cancer-specific lengthening and accumulation of pervasive transcripts on chromatin and concomitant aberrant R-loop formation and DNA damage, which, in turn, trigger cell death. We go on to demonstrate that the global transcriptional hyperactivation driven by Kras signaling during tumorigenesis underlies the specific demand for PAF1C by cancer cells. Our work provides insights into how enhancer transcription hyperactivation causes general transcription factor addiction during tumorigenesis.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/patologia , Pâncreas/metabolismo , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/patologia , Carcinogênese/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias Pancreáticas
8.
Nat Commun ; 13(1): 4943, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999201

RESUMO

The tumor microenvironment (TME) in gastric cancer (GC) has been shown to be important for tumor control but the specific characteristics for GC are not fully appreciated. We generated an atlas of 166,533 cells from 10 GC patients with matched paratumor tissues and blood. Our results show tumor-associated stromal cells (TASCs) have upregulated activity of Wnt signaling and angiogenesis, and are negatively correlated with survival. Tumor-associated macrophages and LAMP3+ DCs are involved in mediating T cell activity and form intercellular interaction hubs with TASCs. Clonotype and trajectory analysis demonstrates that Tc17 (IL-17+CD8+ T cells) originate from tissue-resident memory T cells and can subsequently differentiate into exhausted T cells, suggesting an alternative pathway for T cell exhaustion. Our results indicate that IL17+ cells may promote tumor progression through IL17, IL22, and IL26 signaling, highlighting the possibility of targeting IL17+ cells and associated signaling pathways as a therapeutic strategy to treat GC.


Assuntos
Neoplasias Gástricas , Linfócitos T CD8-Positivos/metabolismo , Humanos , Análise de Célula Única , Neoplasias Gástricas/patologia , Microambiente Tumoral
9.
Cell Discov ; 8(1): 30, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35379810

RESUMO

Personalized immunotherapy, such as cancer vaccine and TCR-T methods, demands rapid screening of TCR-pMHC interactions. While several screening approaches have been developed, their throughput is limited. Here, the Yeast Agglutination Mediated TCR antigen Discovery system (YAMTAD) was designed and demonstrated to allow fast and unbiased library-on-library screening of TCR-pMHC interactions. Our proof-of-principle study achieved high sensitivity and specificity in identifying antigens for a given TCR and identifying TCRs recognizing a given pMHC for modest library sizes. Finally, the enrichment of high-affinity TCR-pMHC interactions by YAMTAD in library-on-library screening was demonstrated. Given the high throughput (106-108 × 106-108 in theory) and simplicity (identifying TCR-pMHC interactions without purification of TCR and pMHC) of YAMTAD, this study provides a rapid but effective platform for TCR-pMHC interaction screening, with valuable applications in future personalized immunotherapy.

10.
Cell Rep ; 38(10): 110492, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263601

RESUMO

Immune checkpoint inhibitor (ICI) therapy is generating remarkable responses in individuals with cancer, but only a small portion of individuals with breast cancer respond well. Here we report that tumor-derived Jagged1 is a key regulator of the tumor immune microenvironment. Jagged1 promotes tumorigenesis in multiple spontaneous mammary tumor models. Through Jagged1-induced Notch activation, tumor cells increase expression and secretion of multiple cytokines to help recruit macrophages into the tumor microenvironment. Educated macrophages crosstalk with tumor-infiltrating T cells to inhibit T cell proliferation and tumoricidal activity. In individuals with triple-negative breast cancer, a high expression level of Jagged1 correlates with increased macrophage infiltration and decreased T cell activity. Co-administration of an ICI PD-1 antibody with a Notch inhibitor significantly inhibits tumor growth in breast cancer models. Our findings establish a distinct signaling cascade by which Jagged1 promotes adaptive immune evasion of tumor cells and provide several possible therapeutic targets.


Assuntos
Evasão da Resposta Imune , Neoplasias de Mama Triplo Negativas , Humanos , Macrófagos/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral
11.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34962260

RESUMO

High-throughput single-cell RNA-seq data have provided unprecedented opportunities for deciphering the regulatory interactions among genes. However, such interactions are complex and often nonlinear or nonmonotonic, which makes their inference using linear models challenging. We present SIGNET, a deep learning-based framework for capturing complex regulatory relationships between genes under the assumption that the expression levels of transcription factors participating in gene regulation are strong predictors of the expression of their target genes. Evaluations based on a variety of real and simulated scRNA-seq datasets showed that SIGNET is more sensitive to ChIP-seq validated regulatory interactions in different types of cells, particularly rare cells. Therefore, this process is more effective for various downstream analyses, such as cell clustering and gene regulatory network inference. We demonstrated that SIGNET is a useful tool for identifying important regulatory modules driving various biological processes.


Assuntos
Redes Reguladoras de Genes , Redes Neurais de Computação , Análise de Sequência de RNA , Análise de Célula Única , Algoritmos , Análise por Conglomerados , Aprendizado Profundo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , RNA-Seq , Fatores de Transcrição/metabolismo
12.
Nonlinear Dyn ; 105(3): 2757-2773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34334951

RESUMO

Multiple new variants of SARS-CoV-2 have been identified as the COVID-19 pandemic spreads across the globe. However, most epidemic models view the virus as static and unchanging and thus fail to address the consequences of the potential evolution of the virus. Here, we built a competitive susceptible-infected-removed (coSIR) model to simulate the competition between virus strains of differing severities or transmissibility under various virus control policies. The coSIR model predicts that although the virus is extremely unlikely to evolve into a "super virus" that causes an increased fatality rate, virus variants with less severe symptoms can lead to potential new outbreaks and can cost more lives over time. The present model also demonstrates that the protocols restricting the transmission of the virus, such as wearing masks and social distancing, are the most effective strategy in reducing total mortality. A combination of adequate testing and strict quarantine is a powerful alternative to policies such as mandatory stay-at-home orders, which may have an enormous negative impact on the economy. In addition, building Mobile Cabin Hospitals can be effective and efficient in reducing the mortality rate of highly infectious virus strains. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11071-021-06705-8.

13.
Nat Metab ; 3(8): 1109-1124, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34385701

RESUMO

Zika virus (ZIKV) infection during pregnancy can cause microcephaly in newborns, yet the underlying mechanisms remain largely unexplored. Here, we reveal extensive and large-scale metabolic reprogramming events in ZIKV-infected mouse brains by performing a multi-omics study comprising transcriptomics, proteomics, phosphoproteomics and metabolomics approaches. Our proteomics and metabolomics analyses uncover dramatic alteration of nicotinamide adenine dinucleotide (NAD+)-related metabolic pathways, including oxidative phosphorylation, TCA cycle and tryptophan metabolism. Phosphoproteomics analysis indicates that MAPK and cyclic GMP-protein kinase G signaling may be associated with ZIKV-induced microcephaly. Notably, we demonstrate the utility of our rich multi-omics datasets with follow-up in vivo experiments, which confirm that boosting NAD+ by NAD+ or nicotinamide riboside supplementation alleviates cell death and increases cortex thickness in ZIKV-infected mouse brains. Nicotinamide riboside supplementation increases the brain and body weight as well as improves the survival in ZIKV-infected mice. Our study provides a comprehensive resource of biological data to support future investigations of ZIKV-induced microcephaly and demonstrates that metabolic alterations can be potentially exploited for developing therapeutic strategies.


Assuntos
Microcefalia/etiologia , Microcefalia/metabolismo , NAD/metabolismo , Infecção por Zika virus/complicações , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Células Cultivadas , Cromatografia Líquida , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Metabolômica , Camundongos , Microcefalia/patologia , Neurônios/metabolismo , Gravidez , Proteômica/métodos , Espectrometria de Massas em Tandem
14.
Virulence ; 12(1): 1209-1226, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34030593

RESUMO

New SARS-CoV-2 mutants have been continuously indentified with enhanced transmission ever since its outbreak in early 2020. As an RNA virus, SARS-CoV-2 has a high mutation rate due to the low fidelity of RNA polymerase. To study the single nucleotide polymorphisms (SNPs) dynamics of SARS-CoV-2, 158 SNPs with high confidence were identified by deep meta-transcriptomic sequencing, and the most common SNP type was C > T. Analyses of intra-host population diversity revealed that intra-host quasispecies' composition varies with time during the early onset of symptoms, which implicates viral evolution during infection. Network analysis of co-occurring SNPs revealed the most abundant non-synonymous SNP 22,638 in the S glycoprotein RBD region and 28,144 in the ORF8 region. Furthermore, SARS-CoV-2 variations differ in an individual's respiratory tissue (nose, throat, BALF, or sputum), suggesting independent compartmentalization of SARS-CoV-2 populations in patients. The positive selection analysis of the SARS-CoV-2 genome uncovered the positive selected amino acid G251V on ORF3a. Alternative allele frequency spectrum (AAFS) of all variants revealed that ORF8 could bear alternate alleles with high frequency. Overall, the results show the quasispecies' profile of SARS-CoV-2 in the respiratory tract in the first two months after the outbreak.


Assuntos
Filogenia , Polimorfismo de Nucleotídeo Único , Quase-Espécies , SARS-CoV-2/classificação , SARS-CoV-2/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , COVID-19/virologia , Biologia Computacional , Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/genética , Feminino , Frequência do Gene , Genoma Viral , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Adulto Jovem
15.
NPJ Precis Oncol ; 5(1): 37, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963274

RESUMO

The efficacy of immunotherapy is largely patient-specific due to heterogeneity in tumors. Combining statistic power from a variety of immunotherapies across cancer types, we found four biological pathways significantly correlated with patient survival following immunotherapy. The expression of immunotherapy prognostic marker genes (IPMGs) in these pathways can predict the patient survival with high accuracy not only in the TCGA cohort (89.36%) but also in two other independent cohorts (80.91%), highlighting that the activity of the IPMGs can reflect the sensitivity of the tumor immune microenvironment (TIME) to immunotherapies. Using mouse models, we show that knockout of one of the IPMGs, MALT1, which is critical for the T-cell receptor signaling, can eliminate the antitumor effect of anti-PD-1 treatment completely by impairing the activation of CD8+ T cells. Notably, knockout of another IPMG, CLEC4D, a C-type lectin receptor that expressed on myeloid cells, also reduced the effect of anti-PD-1 treatment potentially through maintaining the immunosuppressive effects of myeloid cells. Our results suggest that priming TIME via activating the IPMGs may increase the response rate and the effect of immune checkpoint blockers.

16.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34013331

RESUMO

Hi-C is a genome-wide assay based on Chromosome Conformation Capture and high-throughput sequencing to decipher 3D chromatin organization in the nucleus. However, computational methods to detect functional interactions utilizing Hi-C data face challenges including the correction for various sources of biases and the identification of functional interactions with low counts of interacting fragments. We present Chrom-Lasso, a lasso linear regression model that removes complex biases assumption-free and identifies functional interacting loci with increased power by combining information of local reads distribution surrounding the area of interest. We showed that interacting regions identified by Chrom-Lasso are more enriched for 5C validated interactions and functional GWAS hits than that of GOTHiC and Fit-Hi-C. To further demonstrate the ability of Chrom-Lasso to detect interactions of functional importance, we performed time-series Hi-C and RNA-seq during T cell activation and exhaustion. We showed that the dynamic changes in gene expression and chromatin interactions identified by Chrom-Lasso were largely concordant with each other. Finally, we experimentally confirmed Chrom-Lasso's finding that Erbb3 was co-regulated with distinct neighboring genes at different states during T cell activation. Our results highlight Chrom-Lasso's utility in detecting weak functional interaction between cis-regulatory elements, such as promoters and enhancers.


Assuntos
Cromatina/química , Cromatina/genética , Genômica/métodos , Modelos Moleculares , Modelos Estatísticos , Análise de Regressão , Software , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Bases de Dados Genéticas , Epistasia Genética , Regulação da Expressão Gênica , Biblioteca Gênica , Estudo de Associação Genômica Ampla/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Locos de Características Quantitativas
17.
Mol Microbiol ; 116(2): 438-458, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33811693

RESUMO

Streptococcus pneumoniae resides in the human upper airway as a commensal but also causes pneumonia, bacteremia, meningitis, and otitis media. It remains unclear how pneumococci adapt to nutritional conditions of various host niches. We here show that MetR, a LysR family transcriptional regulator, serves as a molecular adaptor for pneumococcal fitness, particularly in the upper airway. The metR mutant of strain D39 rapidly disappeared from the nasopharynx but was marginally attenuated in the lungs and bloodstream of mice. RNA-seq and ChIP-seq analyses showed that MetR broadly regulates transcription of the genes involved in methionine synthesis and other functions under methionine starvation. Genetic and biochemical analyses confirmed that MetR is essential for the activation of methionine synthesis but not uptake. Co-infection of influenza virus partially restored the colonization defect of the metR mutant. These results strongly suggest that MetR is particularly evolved for pneumococcal carriage in the upper airway of healthy individuals where free methionine is severely limited, but it becomes dispensable where environmental methionine is relatively more abundant (e.g., inflamed upper airway and sterile sites). To the best of our knowledge, MetR represents the first known regulator particularly for pneumococcal carriage in healthy individuals.


Assuntos
Proteínas de Bactérias/genética , Metionina/biossíntese , Nasofaringe/microbiologia , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/genética , Transativadores/genética , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Metionina/metabolismo , Camundongos , Infecções Pneumocócicas/patologia , Transativadores/metabolismo , Transcrição Gênica/genética
18.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33658332

RESUMO

The pandemic of COVID-19, caused by SARS-CoV-2, is a major global health threat. Epidemiological studies suggest that bats (Rhinolophus affinis) are the natural zoonotic reservoir for SARS-CoV-2. However, the host range of SARS-CoV-2 and intermediate hosts that facilitate its transmission to humans remain unknown. The interaction of coronavirus with its host receptor is a key genetic determinant of host range and cross-species transmission. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as the receptor to enter host cells in a species-dependent manner. In this study, we characterized the ability of ACE2 from diverse species to support viral entry. By analyzing the conservation of five residues in two virus-binding hotspots of ACE2 (hotspot 31Lys and hotspot 353Lys), we predicted 80 ACE2 proteins from mammals that could potentially mediate SARS-CoV-2 entry. We chose 48 ACE2 orthologs among them for functional analysis, and showed that 44 of these orthologs-including domestic animals, pets, livestock, and animals commonly found in zoos and aquaria-could bind the SARS-CoV-2 spike protein and support viral entry. In contrast, New World monkey ACE2 orthologs could not bind the SARS-CoV-2 spike protein and support viral entry. We further identified the genetic determinant of New World monkey ACE2 that restricts viral entry using genetic and functional analyses. These findings highlight a potentially broad host tropism of SARS-CoV-2 and suggest that SARS-CoV-2 might be distributed much more widely than previously recognized, underscoring the necessity to monitor susceptible hosts to prevent future outbreaks.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/veterinária , Receptores Virais/genética , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Especificidade de Hospedeiro , Humanos , Pandemias/prevenção & controle , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Filogenia , Ligação Proteica , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tropismo Viral , Zoonoses Virais/genética , Zoonoses Virais/prevenção & controle , Zoonoses Virais/virologia , Ligação Viral , Internalização do Vírus
19.
Sci Bull (Beijing) ; 66(9): 884-888, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33457042

RESUMO

Coronavirus disease-2019 (COVID-19) has become a major global epidemic. Facilitated by HTS2 technology, we evaluated the effects of 578 herbs and all 338 reported anti-COVID-19 TCM formulae on cytokine storm-related signaling pathways, and identified the key targets of the relevant pathways and potential active ingredients in these herbs. This large-scale transcriptional study innovatively combines HTS2 technology with bioinformatics methods and computer-aided drug design. For the first time, it systematically explores the molecular mechanism of TCM in regulating the COVID-19-related cytokine storm, providing an important scientific basis for elucidating the mechanism of action of TCM in treating COVID-19.

20.
Nat Cancer ; 2(1): 49-65, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121887

RESUMO

Kras-activating mutations display the highest incidence in pancreatic ductal adenocarcinoma. Pancreatic inflammation accelerates mutant Kras-driven tumorigenesis in mice, suggesting high selectivity in the cells that oncogenic Kras transforms, although the mechanisms dictating this specificity are poorly understood. Here we show that pancreatic inflammation is coupled to the emergence of a transient progenitor cell population that is readily transformed in the presence of mutant KrasG12D. These progenitors harbor a proto-oncogenic transcriptional program driven by a transient enhancer network. KrasG12D mutations lock this enhancer network in place, providing a sustained Kras-dependent oncogenic program that drives tumors throughout progression. Enhancer co-option occurs through functional interactions between the Kras-activated transcription factors Junb and Fosl1 and pancreatic lineage transcription factors, potentially accounting for inter-tissue specificity of oncogene transformation. The pancreatic ductal adenocarcinoma cell of origin thus provides an oncogenic transcriptional program that fuels tumor progression beyond initiation, accounting for the intra-tissue selectivity of Kras transformation.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatite , Adenocarcinoma/patologia , Animais , Carcinogênese , Carcinoma Ductal Pancreático/genética , Inflamação/genética , Metaplasia , Camundongos , Neoplasias Pancreáticas/genética , Pancreatite/induzido quimicamente , Células-Tronco/patologia , Fatores de Transcrição , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...